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GENERATIVE MODEL FOR SPACECRAFT IMAGE SYNTHESIS
USING LIMITED DATASET

Tae Ha Park∗, Simone D’Amico†

This work presents for the first time a conditional Generative Adversarial Net-
work (GAN) to sample arbitrary high-fidelity spacecraft images from the learned
distribution of spacecraft texture and illumination conditions (i.e., styles). The pro-
posed SPEEDGAN utilizes a low-texture template of the spacecraft to empower
SPEEDGAN with a priori knowledge of the spacecraft geometry and pose, allow-
ing the model to focus on creating a spacecraft style. The SPEEDGAN also trains
with a content loss from style transfer literature to improve the structural fidelity
of the generated spacecraft images. Trained on a limited dataset containing images
from the computer graphics renderer and the hardware-in-the-loop simulation fa-
cility, SPEEDGAN generates samples with remarkable visual qualities, measured
by both human and a separate neural network for pose estimation. It is also capa-
ble of separated control over different style aspects, such as spacecraft texture and
illumination effects.

INTRODUCTION

Some of the most exciting mission concepts in development are on-orbit servicing and active de-
bris removal missions, such as the RemoveDEBRIS mission by Surrey Space Centre,1 the Phoenix
program by DARPA,2 the Restore-L mission by NASA,3 and GEO servicing programs proposed by
startup companies such as Infinite Orbits∗ and Effective Space†. In these missions, the on-board
capability of estimating and tracking the relative pose (i.e., position and orientation) of a non-
cooperative target spacecraft is crucial to the autonomous generation of the servicer’s trajectory
and control sequences. Unlike stereovision or light detection and ranging (LIDAR), a monocular
camera is a natural choice of sensor due to its low mass and power requirements suitable for small
spacecraft such as CubeSats. Therefore, extensive body of works has been dedicated to monocular-
based pose estimation architectures.4–12

Inspired by computer vision methods in terrestrial applications, traditional spacecraft pose esti-
mation architectures rely on feature extraction and correspondence. Specifically, in the absence of
a coarse a priori pose knowledge4, 5 or known fiduciary markers on the target,6 robust and accurate
detection of edge13 or point14 features is critical to an algorithm which iteratively finds the pose
solution with the best feature correspondence.15, 16 Unfortunately, classical image processing-based
feature extraction mechanisms are likely to detect partial or spurious features on spaceborne images
due to a number of challenges unique to space environment, such as adverse illumination condition,
high contrast, low signal-to-noise ratio, and the Earth background. Moreover, feature matching is
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Figure 1. Various images of the Tango spacecraft from PRISMA mission. (Left) Low-
texture template, SPEED synthetic, and SPEED real images. (Right) Images from
SPEED synthetic, Imitation-25,20 and PRISMA-25 datasets. PRISMA-25 contains
flight images captured during the rendezvous phase of the PRISMA mission.

expensive due to a large search space of unknown correspondences and limited on-board processing
power.17

Recently, Convolutional Neural Networks (CNN) have become an attractive alternative to replace
a part of or the entire pose estimation architecture. Since CNN is simply a data-driven nonlinear
function trained from a set of input-output pairs, its flexibility allows vastly different types of CNN
architectures in both terrestrial and spaceborne applications. For instance, PoseCNN18 maps an
input image to a 4D unit quaternion and 3D translation vector via separate CNN branches in an
end-to-end fashion, whereas Park et al.11 maps an image cropped around the spacecraft to a vector
containing 2D locations of a set ofN pre-selected spacecraft corners. CNN predicts these corners in
a deterministic order; therefore, the 2D-3D feature correspondence is automatically established, re-
quiring only a single iteration of an existing feature matching algorithm such as EPnP15 to compute
the complete 6D pose solution. PVNet19 also estimates object keypoints by predicting pixel-wise
unit vectors towards each keypoints. Not only are keypoint locations selected via a RANSAC-like
voting scheme of these vectors, they also admit uncertainty in prediction which can be accounted
for in feature matching algorithm.

Due to a severe lack of a large-scale flight imagery of the target spacecraft with accurately anno-
tated pose labels, any spaceborne CNN must be trained almost exclusively on images generated via
computer graphics (i.e., synthetic) and/or the ground-based hardware-in-the-loop testbed (i.e., real).
The Spacecraft Pose Estimation Dataset (SPEED)21 is the first publicly available dataset comprising
15,300 synthetic and real images of the Tango spacecraft from the PRISMA mission.7, 22 It consists
of 15,000 synthetic images from the OpenGL-based renderer and 300 real images of a 1:1 mockup
spacecraft model captured from SLAB’s Testbed for Rendezvous and Optical Simulation (TRON)
facility. SPEED served as the dataset for the Satellite Pose Estimation Competition (SPEC) co-
organized by the Space Rendezvous Laboratory (SLAB) of Stanford University and the Advanced
Concepts Team of the European Space Agency.12 The top-performing entries were able to achieve
sub-degree orientation and sub-millimeter position accuracies on the synthetic test set.

However, the major drawback of relying on synthetic imagery to train a pose estimation CNN is
that it has visual qualities (e.g., spacecraft texture and illumination effects) that are different from
those of other image domains (see Figure 1), inevitably overfitting the model to the features unique
to the synthetic images. This leads to worse performances on real images12 and on PRISMA flight
images.10, 11 Interestingly, Sharma10 points out in Figure 2 that the Spacecraft Pose Network (SPN)9

trained on synthetic images show comparable performance trends when tested on SPEED real im-
ages and PRISMA flight images, suggesting the real images from the TRON facility can be used as
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Figure 2. (Left) Cumulative distribution of rotation error of SPN model9 when tested
on SPEED synthetic test set, real test set, PRISMA-25, and Imitiation-25 datasets.
(Right) Same distribution of the rotation error normalized by inter-spacecraft sepa-
ration and camera field-of-view. Figures taken from Sharma.10

a surrogate of flight images when validating a pose estimation CNN’s performance. This also im-
plies that the real images can be used for training a CNN alongside the synthetic images in order to
improve its performance on flight images. However, as evidenced by the proportion of the number
of images in SPEED, currently available real images are severely limited in terms of quantity and
the variability of spacecraft pose and illumination conditions. Moreover, a hardware-in-the-loop
facility inherently requires much time and effort to capture and calibrate tens of thousands of real
images. Therefore, a method to efficiently generate a large number of real images based on a limited
amount is desirable.

In this paper, a deep generative model is proposed to respond to the aforementioned challenges.
Specifically, this work introduces SPEEDGAN, a conditional Generative Adversarial Network (cGAN)
to efficiently sample the high-fidelity spacecraft images with specified pose and arbitrary lighting
and texture typical to both synthetic and real datasets. The architecture of SPEEDGAN is based on
StyleGAN.23 However, a number of modifications is made in order to ensure the structural fidelity
and pose of the generated spacecraft images. First, the SPEEDGAN generator takes as an addi-
tional input a low-texture template image of the spacecraft (see Figure 1), effectively conditioning
the generator with a priori knowledge of the spacecraft pose and geometry. This also allows the
user to assign pose labels to the generated samples. Second, the SPEEDGAN generator training
is regularized via the content loss24 to ensure the generated image retains the same content as the
template. It is shown that including content loss in the generator’s training objective improves the
training and the generated sample’s visual quality as measured by the Fréchet Inception Distance25

score. Owing to the innovation of the baseline StyleGAN’s architecture and regularization tech-
nique, SPEEDGAN is also able to control spacecraft texture and illumination condition separately.
Lastly, a pose estimation CNN by Park et al.11 is shown to perform well on samples generated by
SPEEDGAN’s samples, suggesting they retain features useful for pose estimation.
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Figure 3. (Left) Early TRON facility with 1:1-scale mockup model of the Tango space-
craft. (Right) Updated TRON facility with a ground-fixed robot arm and a lightweight
1:2-scale mockup model.

This paper is organized as follows: the next section provides backgrounds on generative aversar-
ial networks and style transfer, two instances of generative models that motivate the SPEEDGAN’s
basic architecture and implementation. The section afterwards elaborates on the SPEEDGAN’s
architecture and the training objective, which is followed by a section on the training dataset, im-
plementation details, and a metric to evaluate the generator’s outputs. The paper ends with some
analyses of SPEEDGAN’s generated samples and conclusion with future directions.

BACKGROUND

This section provides a brief background of the sources of SPEED dataset: the Optical Stimulator
(OS)20, 26 camera emulator software and the TRON facility at SLAB. These toolsets are utilized
to generate the dataset used in this paper. Then, a brief introduction of Generative Adversarial
Networks (GAN) and style transfer are given, both of which form a foundation of the StyleGAN23

architecture heavily used by SPEEDGAN.

Optical Stimulator (OS)

The OS software use MATLAB and C++ language bindings of OpenGL to render non-stellar
objects (e.g., satellites, asteroids, planets, etc.) of arbitrary pose. The OpenGL’s frament shader
allows to render realistic illumination effect on the object’s surface based on the object’s pose with
respect to multiple light sources with different radiometric intensity, such as sun and Earth albedo.
SPEED’s synthetic imagery9 is created by selecting the direction of solar illumination that best
matches the lighting in the Earth images captured by the Himawari-8 geostationary meteorological
satellite∗. The OS software is also capable of rendering stellar objects and non-stellar objects at far-
range with accurate radiometric properties. Therefore, it has found applications beside close-range
pose estimation, such as rendering images in hardware-in-the-loop fashion to validate far-range
angles-only navigation algorithms.26, 27

TRON

The early TRON space simulator room (8 × 3 × 3 m) at SLAB featured a 6DOF Kuka robotic
arm, which is mounted to the ceiling and translates on a track at speeds up to 1.5m/s (see Figure
∗ https://himawari8.nict.go.jp/
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3, left). The facility included a 1:1-scale mockup model of the Tango spacecraft fixed on a tripod.
Special low reflectance materials, sun simulators, and custom light boxes allow the reproduction
of illumination conditions encountered in space navigation. The ground-truth pose of the objects
(camera and scene) is provided by a Vicon 10-units camera system which tracks infrared markers
attached to both mockup and camera. This facility was used to create SPEED real images and also
part of the dataset used in this work to train SPEEDGAN.

Recently, the TRON facility has undergone a significant upgrade to include a second 6DOF Kuka
robotic arm fixed on the ground (see Figure 3, right). This robot holds a lightweight 1:2-scale
mockup model, thus allowing the simualtion of full relative orientation distribution and much larger
inter-spacecraft separation. With the upgraded software, the more accurate ground-truth pose of
the objects will be acquired by data fusion of measurements from the Kuka joints and the Vicon
tracking system. While the images from the current facility is not used or presented in this paper,
future works on spaceborne CNNs will be trained and validated using those images.

Generative Adversarial Networks (GAN)

A GAN originally proposed by Goodfellow et al.28 consists of two competing neural networks: a
generator (G) which learns to map a low-dimensional latent space to an image, and a discriminator
(D) which learns to discern if an image is from the data distributon or the generated distribution.
These networks are modeled as CNNs for image inputs.29 The training of GAN naturally leads to
the latent space learning the underlying distribution of the dataset. This is done by training the GAN
over the following adversarial loss,

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))], (1)

where x is a real image drawn from the data distribution pdata, and z is a random vector drawn from
the known prior pz such as a standard normal distribution. This is equivalent to minimizing the
Jensen-Shannon divergence between the data and the generated distributions. While early GANs
suffered from mode collapse and unstable training, novel losses such as minizing Wasserstein dis-
tance30, 31 between two distributions have been proposed to stabilize the GAN training. Recently,
ProGAN32 was proposed to efficiently train a GAN to generate high-resolution images (e.g., 1024
× 1024 pixels) by progressively growing the GAN layers and the sample resolution.

Style Transfer

Style transfer studies how one can alter an image (i.e., content) in the style of another image (e.g.,
painting). The seminal work of Gatys et al.33 demonstrates the image style and content can be
decomposed and extracted from the features of a pretrained CNN. The extracted content and style
are formulated as loss functions to train a feed-forward style transfer network.34 However, these
works are limited to a single style or 32 styles35 per network. In order to render a style transfer
network generalizable to arbitrary style images, Huang & Belongie36 proposes adaptive instance
normalization (AdaIN) given a content input x and a style input y, defined as

AdaIN(x,y) = σ(y)
x− µ(x)
σ(x)

+ µ(y). (2)

Here, µ and σ refer to the mean and standard deviation of a given style input, which adaptively
re-scale the content input by the statistics of the style. Similarly, Ghiasi et al.37 uses InceptionV3
network38 to extract the style embedding y from a style image.
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Figure 4. The SPEEDGAN generator (left) and discriminator (right) architectures.
The generator receives low-texture template image and a random noise z drawn from
the standard normal distribution.

SPEEDGAN

In this section, the SPEEDGAN architecture illustrated in Figure 4 and its training objectives are
explained. The readers interested in further details are encouraged to refer to seminal works by
Karras et al.,23, 32, 39 from which much of the specific implementation details are borrowed.

Architecture

The SPEEDGAN generator architecture is based on that of StyleGAN,23 which deviates from the
traditional GAN architecture which simply maps a latent vector to an image. Instead, the StyleGAN
generator maps a learned constant to an image via a feed-forward convolutional network, while the
latent vectors are injected similar to style transfer networks.37 Specifically, the StyleGAN generator
first maps the latent vector z via a mapping network to an intermediate latent vector w. Then, the
learned affine transformation of w, denoted y = [yµ,yσ], is injected to each convolutional layer
via AdaIN operation (see Eq. 2), scaling and biasing the individual normalized feature maps xi via
yµ and yσ respectively. Figure 4 shows that SPEEDGAN generator adopts the same strategy of
injecting the latent vector. The original StyleGAN also injects stochastic noise scaled by learned
factors after each layer to promote stochacisity in the generated samples (e.g., human hair, freckles,
etc.); however, SPEEDGAN forgoes such detail as the dataset lacks such stochastic variation to
begin with.

A StyleGAN-based generator alone would have to learn to create high-fidelity images of a space-
craft with arbitrary pose and illumination by itself. This creates two problems. One is that outputing
correctly structured spacecraft is an unnecessarily difficult job for a deep neural network to learn.
Two is that the user has no control over the pose of the generated images, making it impossible to
assign labels. Therefore, similar to Sharma et al.,40 the generator is conditioned with low-texture
templates generated using the same OpenGL-based renderer of SPEED by assigning different colors
to each parts of the spacecraft 3D model (see Figure 1). With a priori knowledge of the spacecraft
geometry and pose, the generator can instead focus on learning the distribution of the external
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effects, or styles of the spacecraft, such as illumination, texture, etc. Moreover, the pose of the
template images can be automatically assigned to the generated samples.

In order to condition the generator with an image, SPEEDGAN adopts the U-Net architecture41

similar to pix2pix model42 for image style translation. While using an encoder/decoder-like archi-
tecture is common in many studies of style transfer, SPEEDGAN uses adversarial learning with
the discriminator to learn the underlying distribution of such styles present in the dataset. The skip
connections are used to concatenate the activations of the early layers to those of the later layers,
transferring the knowledge about the template input. Similarly, the discriminator is conditioned on
the templates by simply concatenaing them to the input. The discriminator employs residual con-
nections after each downsampling operations, and it outputs a score or a probability that the input
image is drawn from the training or generated distribution.

Training Objectives

Similar to StyleGAN, SPEEDGAN use the original loss in Eq. 1 with R1 regularization43 for the
discriminator. The R1 regularization imposes a penalty on the discriminator gradients on real data
to promote local convergence of the generative models. Then, from the discriminator loss of Eq. 1,
complete discriminator loss to be minimized is given as

L(D) = −Ex∼pdata(x)[logD(x)]− Ez∼pz(z)[log(1−D(G(z)))] +R1(θ), (3)

where

R1(θ) =
γ

2
Ex∼pdata(x)[‖∇Dθ(x)‖2]. (4)

Here, θ includes all learnable parameters of the discriminator D, and γ controls the scale of the
regularization term.

For generator, the objective is to minimize Ez∼pz(z)[log(1 − D(G(z)))] as shown in according
to Eq. 1. Instead, as adopted in StyleGAN, the generator of SPEED maximizes a non-saturating
loss defined as Ez∼pz(z)[logD(G(z))]. Additionally, in order to increase the structural fidelity
of the generated spacecraft images, the generator loss is augmented with the content loss used
in training a style transfer network.34, 37 Specifically, content loss between the generated sample
(G(z)) and the template (c) is defined as the squared Euclidean distance of the respective activations
of a classification CNN. The complete generator loss to be minimized is then given as

L(G) = −Ez∼pz(z)[logD(G(z)) + λ‖f(G(z))− f(c)‖2] (5)

where λ is the penalty factor, and f(·) is the activation at the conv 4 layer of the VGG-19 model44

pre-trained on ImageNet.45

EXPERIMENT

This section explains the dataset used to train SPEEDGAN and some implementation details re-
garding the GAN architecture, training, and data augmentation. It also introduces Fréchet Inception
Distance (FID)25 which is used to quantify the visual quality of the generated samples.

7



Figure 5. 6 synthetic (left) and 6 real (right) images representative of 6 different poses
present in the training dataset.

Dataset

The dataset for training SPEEDGAN includes 1,200 images composed of 600 synthetic and 600
real images. The real images consist of 300 images that have been published under SPEED and
300 unpublished images. These images were captured using the early TRON testbed; however, due
to its limitation on the robot maneuverability and the size of the target mockup spacecraft, the 600
real images have very restricted pose and lighting variability. Specifically, they consist of 6 sets of
100 images sharing similar pose and virtually identical illumination conditions. The 600 synthetic
images are generated using the OS camera-emulating software. The synthetic images share the pose
labels identical to the real images with random sunlight directions, having more diverse illumination
condition compared to the real imagery (see Figure 5). Finally, a set of 600 low-texture templates
are created with the same pose set by removing any illumination effect and instead assigning colors
to different parts of the spacecraft.

In order to prevent the discriminator overfitting, the dataset is randomly augmented during train-
ing. First, the dataset is pre-processed by cropping the original 1920 × 1200 pixels images into
1200 × 1200 pixels square images around the spacecraft. Then, during training, a square image
is first randomly rotated about the center and then cropped into a random patch of 1024 × 1024
pixels. These two geometric augmentations respectively simulate in-plane rotation and translation
of the target. The same augmentation is performed for the template images to maintain consistent
pose. The final image is resized into 256× 256 pixels.

Since the 1,200 training images consists of very limited pose distribution, the generator may
overfit to the training templates with 600 unique relative orientations. Therefore, in order to gauge
the generator’s ability to create high-fidelity samples on unseen templates, a separate 1,200 test
synthetic images are created by randomly perturbing the ground-truth orientation of the training
images by an angle drawn from the uniform distribution of [−10, 10] degrees. Since these pertur-
bations are not restricted to in-plane rotation, the SPEEDGAN never sees most of these templates
during training.

Implementation Details

SPEEDGAN retains much of the implementation details of StyleGAN in our experiment. Specifi-
cally, all trainable parameters employ equalized learning rate32 which dynamically scales the weights
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Figure 6. SPEEDGAN generator and discriminator architectures. Arrows in gen-
erator indicate skip connections via concatenation. Arrows in discriminator indicate
residual connections via element-wise addition.

by the per-layer normalization constant of He’s initializer.46 Except the last layer of both networks,
leaky ReLU activation is used with α = 0.2. All up/downsampling layers also include bilinear
filtering to prevent the output signal aliasing.47 The layers prior to style vector injection in the gen-
erator normalize the feature vectors in each pixel to unit length after each convolution operation.32

The discriminator does not employ any normalization, however the minibatch standard deviation
layer is added towards the end of the discriminator.32 The overall architecture is laid out in Figure
6. Given the size of the dataset, both networks are kept very light in order to minimize overfitting,
as the generator only has about 635,000 learnable parameters.

In the subsequent StyleGAN2,39 the authors note that AdaIN operations often fail to suppress
the amplification of some feature maps, creating blob-like artifacts in the generated samples. In
order to prevent this issue, SPEEDGAN generator replaces the AdaIN operation with equivalent
modulation/demodulation of convolution weights as suggested in StyleGAN2.39

In all experiments, SPEEDGAN is trained on 256 × 256 pixels images with latent vector drawn
from 16-dimensional standard normal distribution. The mapping network consists of 8 layers of size
16. The training is done with the AdamW48 optimizer with learning rate 0.001, β1 = 0, β2 = 0.99
on minibatches of size 20. The loss regularization penalty factors are set as γ = 0.5 and λ = 0.1.
Moreover, given the additional computation required to evaluate the discriminator’s gradients in R1
regularization in Eq. 4 and the content loss regularization in Eq. 5, these terms are only added to
the respective loss once every k minibatches in order to reduce training time39 (k = 8 for G, k =
16 for D). Moreover, unless specified otherwise, we employ style mixing regularization as done
in StyleGAN,23 where for 90% of the training images, two random latent vectors are used in the
generator instead of one to generate samples. Specifically, they are applied before and after the
randomly selected cut-off layer to localize the effect of the style vector at each layer on the final
generated samples.

SPEEDGAN is implemented with PyTorch v1.6.0 and trained on an NVIDIA GeForce RTX
2080 Ti 12GB GPU. The architecture in Figure 6 generally takes about 16 hours in this setup to
show SPEEDGAN discriminator 3 million training images of size 256× 256 pixels. This amounts
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Figure 7. Training curve of FID score versus number of training images shown to the
SPEEDGAN discriminator. Each configuration is run 3 times, and minimum, median,
and maximum of FID performance at each training step are reported.

to training with the given dataset of 1,200 images for 2,500 epochs.

Evaluation Metric

Apart from the qualitative analysis of the sample quality, it is beneficial to quantify it with respect
to the training dataset. Here we use the popular Fréchet Inception Distance (FID)25 which compares
the statistics of the InceptionV338 activations of real (xr) and generated (xg) images. Specifically,
FID assumes these activations are drawn from multivariate Gaussian distributions with respective
mean (mr,mg) and covariance (Cr, Cg). After computing these statistics from both sample batches,
FID computes the Wasserstein-2 distance between the two Gaussian distributions as

d2(mr, Cr,mg, Cg) = ‖mr −mg‖2 + Tr(Cr + Cg − 2
√
CrCg). (6)

In all experiments, 12,000 random samples are generated with 10 samples per each training tem-
plate. These samples are compared to all available 1,200 training images to compute the FID score.

RESULTS

First, Figure 7 shows the training curve of SPEEDGAN trained without style mixing regular-
ization, where the performance is measured in terms of FID score of the samples generated with

10



Figure 8. (Top) Samples resembling synthetic images. (Bottom) Samples resembling
TRON real images.

the training templates. The training curve shows some divergence in training pattern due to lack
of training images; however, it also exhibits better and faster convergence when the content loss is
used to augment the generator loss. Qualitatively, the final samples are visualized in Figure 8 after
training SPEEDGAN generator with style mixing regularization for 10 million images. Here, the
samples from the generator trained with content loss are shown for three distinct poses. The samples
carry detailed patterns of the solar panel, side brackets, and the spacecraft edges.

The advantage of using a StyleGAN-based generator is that the style-mixing regularization during
training promotes localization of styles at different layers of the generator, i.e., modifying a subset
of style vectors applied to different layers in the generator will only affect certain aspects of the
image. For example, for a human face dataset, Karras et al.23 demonstrates that injecting different
style vectors to early layers at low resolution modifies high-level features such as pose, face shape,
etc., whereas injecting at later layers at high resolution modifies small details such as hair style,
color, etc.

Figure 9 shows that similar trend can be seen on a synthetic-like sample by injecting the style of
a real-like sample to different blocks of SPEEDGAN. It is evident that such style replacement in the
early layers do not make noticeable change to the sample properties. The effect is the largest when
the style replacement is made in the middle layers. Specifically, styles injected to ConvUp256 (see
Figure 6) layers control spacecraft texture, whereas styles injected to ConvUp128 layers control
the effect of illumination, such as overall brightness and the visibility of the solar panel. Such
disentanglement, or decoupling, of different styles enables a guided generation of the spacecraft
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Figure 9. Three samples from Source A (leftmost column) and one from Source B
(top) are generated from respective latent style vectors. The samples in each row are
generated from Source A by copying the style vectors of Source B to the specified
block of the generator (see Figure 6)

Table 1. Performance of a pose estimation network (KRN)11 on training vs. generated samples.

ER[
◦] ET [m] SLAB/ESA Score

Training 23.35 [0.085, 0.067, 1.014] 0.699
Generated 25.15 [0.083, 0.082, 0.921] 0.704

samples. Figure 9 also suggests that given the limited variability of styles (e.g., two spacecraft
textures, constant illumination in real images) in the current dataset, the style injection in the early
layers is unnecessary. Indeed, while styles corresponding to coarse spatial resolution have shown
to have more control over the global features (e.g., pose shape) for the human face dataset,32 for
SPEEDGAN such information is already provided by the template image.

Finally, in order to diagnose the quality of generated samples from the perspective of a pose
estimation CNN, the Keypoint Regression Network (KRN) by Park et al.11 is used to regress 11
keypoint locations from the generated samples. The original KRN is used alongside the Object
Detection Network (ODN) which first detects and isolates the region-of-interest (RoI) around the
spacecraft, such that KRN performs keypoint regression on images cropped around the detected
RoI. In this work, KRN pre-trained on SPEED synthetic training images is applied directly on the
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generated 256 × 256 pixels samples. Then, the predicted keypoint locations are translated to the
true locations in the original 1920 × 1200 pixels image, which are used to compute the quaternion
(q̃) and the translation vector (t̃) using EPnP algorithm.15 These are compared against the true pose
(q, t). Specifically, the same metrics as in Park et al.11 are used, where

ER = 2arccos |q̃ · q| (7)

ET = |t̃− t| (8)

SLAB/ESA Score =
1

N

N∑
i=1

‖t̃(i) − t(i)‖2
‖t(i)‖2

+ E
(i)
R . (9)

The combined ODN/KRN architecture has scored 0.0626 on SPEED synthetic test set and 0.3951
on SPEED real test set.11

Table 1 shows the performance of the KRN-only architecture. The KRN’s performance on the
training dataset, which consists of 600 synthetic and 600 real images, is worse than reported by
Park et al.11 The discrepancy is due to significantly different image pre-processing procedures
employed in this work, especially in terms of image cropping. However, most importantly, Table
1 demonstrates the KRN’s performance on the generated samples is similar to its performance on
the training images in terms of both rotation and translation errors, indicating that SPEEDGAN is
able to produce samples with features that can be recognized by another CNN trained on the true
synthetic images.

CONCLUSION

This works presents SPEEDGAN, the very first generative model to synthesize the spacecraft
images. Specifically, by combining the state-of-the-art GAN generator architecture and the style
transfer network with its training objective, SPEEDGAN is able to generate from the low-texture
templates the high-quality images of the Tango spacecraft with characteristics of both SPEED syn-
thetic and real imageries. Specifically, it was shown that adding content loss to the generator’s
training objective significantly accelerates the GAN training as represented by the FID score. More-
over, the SPEEDGAN’s generator can localize the effects of style vectors in its architecture, such
that modifying a style vector in one block affects the sample spacecraft’s texture and illumination
when modified in another block. The visual quality of the generated samples are also assessed in
terms of their viability as a resource to train a pose estimation CNN. Specifically, it is shown that
SPEEDGAN can generate samples with features that can be recognized by the pose estimation CNN
trained on SPEED synthetic images.

Immediate future works include further improving the visual quality of the generated samples
and devising a quantitative metric similar to FID which captures both sample quality and variety.
Moreover, SPEEDGAN will be trained on SPEED+, an upgraded dataset which will contain a
large quantity of real images with much more diverse pose distribution and illumination conditions.
Specifically, the updated TRON facility will be capable of (1) generating a large-scale dataset of
calibrated spacecraft images with uniformly distributed poses and (2) capturing a spacecraft image
corresponding to a commanded pose. These new capabilities will help answer a number of long-
term goals, one of which is to further diversify the training dataset for pose estimation with new
realistic samples based on synthetic and real images, but having visual properties that are unlike
those of sythetic or real images.
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