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ROBOTIC TESTBED FOR RENDEZVOUS AND OPTICAL
NAVIGATION: MULTI-SOURCE CALIBRATION AND MACHINE

LEARNING USE CASES

Tae Ha Park∗, Juergen Bosse†, Simone D’Amico‡

This work presents the most recent advances of the Robotic Testbed for Ren-
dezvous and Optical Navigation (TRON) at Stanford University - the first robotic
testbed capable of validating machine learning algorithms for spaceborne optical
navigation. The TRON facility consists of two 6 degrees-of-freedom KUKA robot
arms and a set of Vicon motion track cameras to reconfigure an arbitrary relative
pose between a camera and a target mockup model. The facility includes multi-
ple Earth albedo light boxes and a sun lamp to recreate the high-fidelity space-
borne illumination conditions. After the overview of the facility, this work de-
tails the multi-source calibration procedure which enables the estimation of the
relative pose between the object and the camera with millimeter-level position
and millidegree-level orientation accuracies. Finally, a comparative analysis of
the synthetic and TRON simulated imageries is performed using a Convolutional
Neural Network (CNN) pre-trained on the synthetic images. The result shows a
considerable gap in the CNN’s performance, suggesting the TRON simulated im-
ages can be used to validate the robustness of any machine learning algorithms
trained on more easily accessible synthetic imagery from computer graphics.

INTRODUCTION

The vision-only navigation of a spacecraft about noncooperative Resident Space Objects (RSO)
is an enabling technology for future on-orbit servicing and debris removal missions. Unlike those
based on complex sensors such as Light Detection and Ranging (LIDAR) or stereovision, monocular
navigation systems utilize a commercially available low Size, Weight, Power, and Cost (SWaP-C)
camera, making it an attractive choice of sensor due to its low mass and power requirements. The
key component of monocular navigation is to determine the pose (i.e., position and orientation)
of the target relative to the servicer’s camera based on a single or a sequence of images. The
conventional approach is to first extract and process salient features such as points,1 edges,2, 3 scale-
invariant features such as SIFT,4 SURF5 and ORB6 features of a spacecraft, or landmark features
such as craters of an asteroid.7 These features are then compared with those of the available target
3D model to compute the 6D pose.7–12 Recently, Machine Learning (ML) techniques based on
Convolutional Neural Networks (CNN) have been developed to replace the feature extraction step
with superior performance.13–17 However, unlike image processing-based methods, a CNN must be
trained on a large set of target images with accurate pose labels. While the data-hungry nature of
the training is a ubiquitous challenge for any ML applications, it is especially difficult and outright
impractical in spaceborne applications to acquire a large quantity of images of interested targets in
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Figure 1. SPEED synthetic (left) and simulated (right) cropped images with the pose
label estimated from the TRON testbed.

various space environments with accurate pose labels. Therefore, existing works rely on synthetic
images generated from a computer graphics renderer such as OpenGL13–15, 17 or Blender11 to train
and test the CNN subsystems.

Unfortunately, the synthetic renderers cannot faithfully replicate various illumination and noise
artifacts present in the spaceborne imagery. Naturally, CNNs trained with synthetic images alone
would overfit to the features inherent to the synthetic imagery and thus have degraded performance
on the spaceborne imagery.14, 15, 17, 18 Therefore, in order for a CNN-based system to be deployed
to space missions: 1) it must be trained to be robust against various adversarial conditions in space
such as high contrast, extreme shadowing and low signal-to-noise ratio, and 2) its robustness must
be validated on ground with no access to target spaceborne images. Previous works have attempted
to address the robust training with extensive data augmentation during training,14, 16 but relatively
fewer works or efforts have been dedicated to the issue of on-ground validation of CNNs.13 The
most promising method involves a robotic testbed that is capable of re-creating various space envi-
ronmental conditions and configuring the camera and the target model to achieve the desired relative
pose with high accuracy. Such facility would allow one to obtain the quasi-spaceborne imagery of
an arbitrary quantity and characteristics with statistical distribution completely different from syn-
thetic images. Such an imagery can then be used to evaluate the robustness of the CNN trained with
synthetic images or any other vision-based navigation algorithms developed based on them.

One example of such approach is the Spacecraft Pose Estimation Dataset (SPEED),19 which was
made publicly available in 2019. SPEED contains 15,000 synthetic images of the Tango spacecraft
from the PRISMA mission8, 20 and 300 simulated images of the full-scale Tango mockup model cap-
tured from the Robotic Testbed for Rendezvous and Optical Navigation (TRON) at the Stanford’s
Space Rendezvous Laboratory (SLAB). As seen in Figure 1, a simulated image describes identical
geometric features of the target yet has fundamentally different visual characteristics compared to
its synthetic counterpart. In fact, the result of the Satellite Pose Estimation Competition (SPEC), co-
hosted by SLAB and the Advanced Concepts Team (ACT) of the European Space Agency (ESA) in
2019, shows virtually all the top-performing CNNs trained on synthetic images have degraded per-
formances on simulated images.15 The similar trend is also described in Figure 2, which shows that
the Spacecraft Pose Network (SPN) model trained on SPEED synthetic images have worse attitude
predictions on SPEED simulated (real) test set and PRISMA-25, which consists of 25 spaceborne
images from the rendezvous phase of the PRISMA mission. Interestingly, the degraded yet com-
parable performances on the simulated and spaceborne images suggest that the simulated images
from a robotic testbed with the capabilities of TRON can thus be used to evaluate the robustness
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Figure 2. (Left) Cumulative distribution of rotation error of SPN13 when tested
on SPEED synthetic test set, real test set, PRISMA-25, and Imitiation-25 datasets.
(Right) Same distribution of the rotation error normalized by inter-spacecraft sepa-
ration and camera field-of-view. Figures taken from Ref [18].

of a CNN for spaceborne applications. However, the simulated imagery of SPEED is currently
restricted to 300 images with extremely restricted pose distribution and variety of illumination con-
ditions. Therefore, a significant upgrade must be made to validate the performance on a wide range
of navigation scenarios.

Several other laboratories have constructed similar testbeds to simulate vision-only closed-loop
navigation and control algorithms. Some examples include ASTROS at the Georgia Institute of
Technology,21, 22 POSEIDYN at the Naval Postgraduate School,23 and M-STAR at California Insti-
tute of Technology.24 These facilities commonly employ air-bearing platforms on a flat epoxy or
granite floor with thrusters and actuators to simulate the spacecraft movement and Vicon motion-
tracking cameras to provide ground-truth pose labels. While these testbeds excel at simulating actual
spacecraft movement given maneuver commands, none of them are tailored for ML applications, as
the capability of efficiently reconfiguring the arbitrary pose commands at large quantity has never
been showcased. Recently, the GNC Rendezvous, Approach and Landing Simulator (GRALS)
testbed at the European Space Research and Technology Centre (ESTEC), a facility comprising a
ceiling-mounted KUKA robotic arm and Vicon motion track cameras, was used to generate 100
simulated images of 1:25 mockup of the Envisat satellite.25 However, similar to the earlier gener-
ation of TRON, the target is mounted on a static tripod, severely restricting the image acquisition
from different viewpoints.

The first contribution of this paper is the introduction of the next generation TRON facility at
SLAB, the first testbed capable of accurately reconfiguring an arbitrary relative pose with high-
fidelity space-like illumination conditions. Unlike other facilities, TRON includes two KUKA 6
degrees-of-freedom (DOF) robot arms26 respectively holding a camera and a lightweight, reduced-
scale model of the target RSO (see Figure 3). One robot is installed on a ceiling-mounted linear
rail running through the facility; therefore, compared to its previous generation with only one robot
arm,13, 27 the facility as a whole provides total 13 DOF and allows to take images of the target
from the full orientation space and the distance between two objects up to 6 meters. To the authors’
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knowledge, this capability of TRON is only rivaled by the European Proximity Operations Simulator
(EPOS) at DLR, which also consists of two 6DOF KUKA robot arms to simulate the rendezvous and
proximity operations in space.28 In addition, the TRON facility is equipped with 10 Earth albedo
light boxes around the room simulating the diffuse light27 and a metal halide arc lamp simulating
the direct sunlight.

The second contribution of this paper is the multi-source calibration procedure of TRON using
two independent measurement systems: 1) KUKA telemetry which provides the end-effector poses,
and Vicon motion track system which provides the objects’ poses via tracking the infrared (IR)
markers attached to them. Given rigid fixtures of both the camera and the target onto the respective
end-effectors, the calibration amounts to solving for each measurement source the Robot/World
Hand/Eye (RWHE) calibration problem29 associated with either measurement source. This allows
one to reconstruct the target’s pose based on either KUKA or Vicon measurements. The final pose
estimate is obtained by fusing the reconstructed poses in a Bayesian framework, which helps reduce
the effect of any bias or noise present in either measurements. Moreover, a criterion is developed to
reject any bad measurements reported by Vicon. The result shows that the calibrated poses of the
target relative to the camera achieve on average sub-degree orientation and millimeter-level position
accuracy at close range.

The third contribution of this paper is the comparative analysis of simulated images under a
variety of illumination settings that the TRON facility is capable of recreating using its albedo
boxes and the sun lamp. Specifically, a CNN pre-trained on SPEED synthetic training images is
used on pairs of synthetic and simulated images with shared pose labels and aligned directions of
the light source. A considerable performance gap is observed between two imageries, with far worse
performance on the model illuminated with the sun lamp and viewed from certain directions. This
suggests that the TRON simulated images exhibit a significant domain gap against the synthetic
training images and thus can be used as a good database for validating a CNN’s robustness across
different domains.

This paper is organized as follows. It first provides an overall description of various components
of the TRON testbed. Then, it describes the full calibration procedure and the data fusion mecha-
nism to enable accurate pose label generation. An experiment calibration is run to show the accuracy
reported by the testbed, and it ends with a comparative analysis of the synthetic and simulated image
qualities using a pre-trained CNN.

NOTATIONS

In this work, xA ∈ R3 denotes a 3D vector expressed in a reference frameA, and xh
A = [ x>A 1 ]>

is a homogeneous vector extension of xA. Given two reference frames A and B, a point xB can be
equivalently expressed in A via the following rigid transformation,

xA = RBAxB + AtAB, (1)

where RBA ∈ R3×3 is an orthonormal rotation matrix aligning B to A, and AtAB is a translation
vector from the origin of A to that of B expressed in A. Equation 1 is equivalent to the following
transformation of homogeneous vectors,

xh
A =

[
RBA

AtAB

01×3 1

]
xh
B = TBAx

h
B, (2)

where TBA ∈ R4×4 is a combined roto-translation or transformation matrix between B and A.
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Figure 3. TRON simulation room and its components.

TRON FACILITY DESCRIPTION

The TRON facility at the Space Rendezvous Laboratory (SLAB) of Stanford University, visu-
alized in Figure 3, includes a control room and an 8 × 3 × 3 [m] simulation room which consists
of various components and machineries to 1) simulate the vision-based rendezvous trajectory of
a servicer spacecraft with a camera to its target RSO, and 2) emulate the high-fidelity spaceborne
illumination conditions to maximize the realism in the images captured by the camera. This section
provides a high-level overview of the components of the facility enabling the above two goals. Note
that the facility has seen an extensive upgrade to both its hardware and software capabilities since
its original descriptions in Refs [13], [18].

Pose Reconfiguration & Annotation

Given a relative pose to be achieved between the servicer’s camera and the RSO model, including
satellites, debris, and even celestial bodies such as asteroids and the landing sites, the pose reconfig-
uration is achieved by simultaneously controlling two 6 DOF KUKA robotic arms,26 respectively
holding a camera and a lightweight, reduced-scale mockup model of the RSO at their end-effectors
(see Figure 3). The robot holding a camera is installed onto a ceiling-mounted linear axis rail, pro-
viding an additional DOF along the facility and up to approximately 6 meters of separation between
the objects along the linear rail. The facility as a whole thus provides total 13 DOF and allows to
take images of the target model with the orientation distribution covering the full SO(3) space. To
the authors’ knowledge, this capability is currently unavailable in any other similar testbeds except

5



Figure 4. (Left) Two albedo light boxes activated. (Right) Sun lamp activated.

in the EPOS facility at DLR. The desired RSO’s model can be manufactured with two mounting
spots at the opposite sides, so that at each mounting configuration, only half of the orientation space
is viewed by the camera in order to prevent the robot arm from ever blocking its sight.

In order to track the movements of both objects, the facility includes 12 Vicon Vero cameras that
track the IR markers attached to the objects.30 The Vicon tracker software attaches a reference frame
to a set of IR markers associated with each object and is capable of reporting its real-time position
and orientation within the facility. Independent from the external measurements provided by Vicon,
the KUKA system also provides the telemetry of the poses of both arms’ end-effectors in real-time
based on their internal joint angles. These two sources of measurements are later jointly used to
calibrate the facility, so that a user can retrieve the most accurate estimate of the pose between the
camera and the target mockup model in any arbitrary configuration of the robot arms.

High-Fidelity Illumination Condition

In order to physically recreate high-fidelity space illumination conditions, the TRON facility is
equipped with 10 light boxes around the walls to simulate the diffuse light of Earth albedo.27 A light
box consists of a diffuser plate covering hundreds of Light Emitting Diodes (LEDs) arranged in
strips that can be regulated in color and intensity. The light boxes are rigorously calibrated to output
maximally uniform radiance across the diffuser plates consistent with Earth albedo in Low Earth
Orbits (LEO).31 The facility also includes a metal halide arc lamp capable of simulating a direct
sunlight. Figure 4 illustrates the operation of both devices and a stark contrast of the effects they
cast onto a model. All ambient light sources, including the deactivated light boxes and the windows,
are covered with light-absorbing black commando curtains during operations to maximize the effect
of diffuse and direct light.

SINGLE-SOURCE CALIBRATION

The calibration of TRON aims to enable the estimation of the pose between the camera and
the target RSO given measurements from KUKA and/or Vicon. This section first formulates the
calibration problem based on a set of measurements from a single source: KUKA or Vicon. Then,
it provides the descriptions of the full calibration procedure.
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Figure 5. (Top) End-effector (CK , EK) and object (C, T ) reference frames. (Bottom)
Object reference frames assigned by Vicon (CV , TV ), visualized in the Vicon tracker
software as RGB triads.

Reference Frames

The following reference frames used in a single-source calibration are defined below and illus-
trated in Figure 5.

• Camera true reference frame (C), whose z-axis is along the camera boresight and its xy-axes
form the image plane.

• Target true reference frame (T ), defined according to the 3D model of the target.

• KUKA end-effector frames (CK , TK), defined respectively for the end-effectors of the camera-
and the target-holding robot arms.

• Global KUKA reference frame (K), fixed at an arbitrary location on the ground.

• Vicon object frames (CV , TV ), defined respectively by the Vicon tracker software based on
the set of IR markers associated with each object.

• Global Vicon reference frame (V ), also defined by the Vicon tracker software to be fixed at
an arbitrary location within the facility.

Single-Source Calibration Problem

Figure 6 visualizes the calibration problem in a KUKA-only setting. The goal is to estimate the
true pose between the camera and the target, TTC . Note that KUKA provides the measurements
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Figure 6. Diagram of the KUKA-only calibration problem.

(TTKK ,TCKK), which denote the rigid transformations between the global KUKA frame and both
robots’ respective end-effector frames. Equivalently, the measurement provides the relative pose be-
tween two end-effectors, T (i)

TKCK
= (T

(i)
CKK)−1T

(i)
TKK , i = 1, . . . , N , for N calibration data points.

There is also an offset between an end-effector and the object it holds, denoted by (TTKT ,TCKC),
that are constant regardless of robot configurations due to rigid fixture of an object onto its end-
effector. Then, it is obvious from Figure 6 that if the user has a knowledge of (TTKT ,TCKC), the
true pose in question can be recovered via:

T̃
(i)
TC,K = TCKCT

(i)
TKCK

T−1TKT , (3)

where T̃TC,K indicates that the pose has been estimated based on the KUKA measurements. Note
that the setting is completely identical in case of Vicon-only calibration, in which given the mea-
surements T (i)

TV CV
, i = 1, . . . , N , knowing the constant offsets (TTV T ,TCV C) allows one to recover

the true pose via
T̃

(i)
TC,V = TCV CT

(i)
TV CV

T−1TV T , (4)

where T̃TC,V indicates that the pose has been estimated based on the Vicon measurements. Hence-
forth, the subscript denoting the measurement source (K, V ) is omitted for notational simplicity
unless noted otherwise.

The single-source calibration problem now amounts to solving for the constant offsets (TTKT ,
TCKC) or (TTV T , TCV C). Assuming one can recover the true poses for a limited amount of samples
in a controlled calibration setting, denoted T (i)

TC,cal, i = 1, . . . , N , then Equations 3 and 4 can be
rearranged to

T
(i)
TC,calTTST = TCSCT

(i)
TSCS

, i = 1, . . . , N, (5)

where S ∈ {K,V } denotes the measurement source, and TTST ,TCSC are the only unknowns.
Equation 5 is known as the Robot/World Hand/Eye (RWHE) calibration problem whose solution is
well studied in literature.29, 32, 33

In summary, the calibration procedure to solve the single-source RWHE problem in Equation 5
consists of two steps: solve for TTC,cal, then solve the RWHE problem in Equation 5 for each given
measurement source. Next sections describe how these two steps are resolved.

Solving T TC,cal

First, the true pose can be accurately estimated using a known calibration camera and a pattern
such as chessboard, asymmetric circle grids, or ChArUco which combines unique ArUco markers34
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Figure 7. Calibration setup with a ChArUco pattern board on the model.

and a chessboard. In this work, a ChArUco pattern board is used to solve TTC,cal. Compared to
other options, a ChArUco pattern offers especially flexible choices in terms of its placement with
respect to the camera, as the presence of unique ArUco markers allows an easy identification of a
partial set of the chessboard corners visible from the images.

As shown in Figure 7, a ChArUco pattern board of known dimensions is manufactured and fixed
at the known location over a flat surface of the model such as the solar panel, so that the 3D coor-
dinates of the pattern features (i.e., chessboard corners) are known in T reference frame. Then, one
can simply solve the Perspective-n-Point (PnP)35 problem to compute T (i)

TC,cal for i = 1, . . . , N ,
which involves minimizing the following reprojection error:

min
T

(i)
TC ,i=1,...,N

1

M

N∑
i=1

Mi∑
j=1

‖Π(T
(i)
TC ,Xj ,K,d)− xj‖2, (6)

where Π(·) is a projection operator, Xj is the 3D location of the jth feature, xj is the 2D location
of the detected jth feature in the image plane, K contains the camera’s intrinsic parameters, d
contains the lens distortion parameters, andM =

∑N
i=1Mi is the total number of visible features in

all images. It is also possible to simultaneously perform camera calibration by jointly minimizing
(TTC ,K, d) in Equation 6. In this case, the usage of a ChArUco pattern is also advantageous, as the
flexibility in its positioning facilitates the detection of the chessboard corners along the edges and
corners of the image plane, which increases the quality of the estimated lens distortion parameters.

The detection of the ArUco markers and the chessboard corners is performed using the aruco
library of OpenCV 4.5.2†.

Solving RWHE Problem

Once TTC,cal are available from solving Equation 6, the RWHE problem in Equation 5 for both
Vicon and KUKA measurements can be solved using any existing algorithms based on iterative
nonlinear least-squares optimization,29 Kronecker product of matrices,32 dual quaternions,33 and so

†https://github.com/opencv/opencv contrib
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on. This work frames the RWHE as the following nonlinear least-squares problem,29

min
TTST ,TCSC

N∑
i=1

‖T (i)
TC,cal − TCSCT

(i)
TSCS

T−1TST
‖2F , S ∈ {K,V }, (7)

where ‖ · ‖F denotes a Frobenius norm. In general, the rotation matrices (RTST ,RCSC) can be
parametrized using a quaternion, Euler angles, or the matrices themselves can be used directly in
the optimization with proper constraints. This work uses the vector representation r of a rotation
matrixR related by the Rodrigues formula, i.e.,

R(r) = I3×3 cos θ + (1− cos θ)uu> + [u]× sin θ, (8)

where θ = ‖r‖, u = r/θ, and [u]× is a skew-symmetric matrix of u. This parametrization requires
no constraint and is also the adopted parametrization in OpenCV, which facilitates the interface with
the OpenCV functionalities.

In summary, Equation 7 can be expanded to

min
rTTS

,TS tTST ,rCSC ,CtCCS

N∑
i=1

‖T (i)
TC,cal −

[
R(rCSC) CtCCS

01×3 1

]
T

(i)
TSCS

[
R(rTTS

) TStTST

01×3 1

]
‖2F ,

(9)
which is solved using the Levenberg-Marquardt algorithm available in MATLAB’s lsqnonlin
function‡.

DATA FUSION

Once the offsets (TTKT , TCKC , TTV T , TCV C) are estimated from the KUKA-based and Vicon-
based RWHE calibration problems, one can use either Equation 3 or 4 to estimate T̃TC for any
new data samples. In reality, one can also fuse the results from both measurement sources to help
mitigate any bias or noise introduced to the offsets estimated in a single-source measurement setting.
In contrast to the single-source calibration, a data fusion approach can take into account the fact that
the reference IR markers cannot always be reliably tracked by multiple Vicon cameras, as a number
of them inevitably fall into blind spots created by the robot arms and the target model as they move.
The condition is exacerbated by the noise introduced by the reflective surfaces of the RSO model
and the robot arm components. On the other hand, the KUKA measurements are reported with
consistent accuracy based on the internal joint angles of the robot arms regardless of the end-effector
pose in the room. Therefore, the limitation of Vicon necessitates a criterion to reject any outlying
Vicon measurements, in which case the pose estimated from the KUKA measurement, T̃TC,K , is
used alone as the final pose label. The following sections describe the data fusion strategy and the
rejection criterion.

Bayesian Data Fusion

This work employs a Bayesian approach to data fusion36 which utilizes Bayes’ theorem and
Maximum A Posteriori (MAP) estimation of the posterior state. The Bayesian framework allows
one to estimate the true state X as more observations Z become available. Let the probability
density function p(Z | X) denote the likelihood function encoding the probabilistic information

‡https://www.mathworks.com/help/optim/ug/lsqnonlin.html
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contained in the random variable Z about X . By Bayes’ theorem, the a posteriori probability that
X = x given the measurement Z = z can be expressed as

p(X = x | Z = z) ∝ p(Z = z | X = x)p(X = x) (10)

where p(X = x) denotes the a priori probability that the stateX is x. If we receive two sets of mea-
surements (Z1, Z2) that are conditionally independent given the state X , i.e., p(Z = Z1, z2 | X =
x) = p(Z = z1 | X = x)p(Z = z2 | X = x), then Equation 10 expands to

p(X = x | Z = z1, z2) ∝ p(Z = z1 | X = x)p(Z = z2 | X = x)p(X = x). (11)

Then, the MAP estimate of the posterior state x̂ is given as

x̂ = arg max p(Z = z1 | X = x)p(Z = z2 | X = x). (12)

Assuming the likelihood function is modeled as a Gaussian distribution, i.e.,

p(Z = z | X = x) =
1

σ
√

2π
exp

(
−(x− z)2

2σ2

)
(13)

where the standard deviation σ denotes the uncertainty associated with the measurements provided
by the sensor, then the MAP estimate of Equation 12 becomes

x̂ =
σ22

σ21 + σ22
z1 +

σ21
σ21 + σ22

z2, (14)

and the total variance of the fused measurements becomes σ2f = (σ−21 + σ−22 )−1.

Essentially, Equation 14 describes the weighted mean of two measurements based on the un-
certainties associated with each measurement sources. In the context of TRON calibration, the
uncertainty associated with each measurement source is estimated assuming TTC,cal, the true pose
estimated from solving the PnP, represents the mean transformation. Then, the variance associated
with each dimension of the estimated position vector C t̃CT is defined as

σ2p =
1

N − 1

N∑
i=1

[(
C t̃

(i)
CT

)
p
−
(
Ct

(i)
CT,cal

)
p

]2
, p ∈ {1, 2, 3} (15)

so that they can be applied to Equation 14 to compute the dimension-wise weighted mean of two
measurements.

To compute the weighted mean in the orientation space, the variance of measurement is taken as
a scalar value corresponding to the angular distance between the measured and the mean rotation
matrices, i.e.,

dθ(i) = arccos

(
tr(dR(i))− 1

2

)
, where dR(i) = (R

(i)
TC)>R

(i)
TC,cal. (16)

Then, the variance associated with the relative orientation is given as

σ2R =
1

N − 1

N∑
i=1

(dθ(i))2. (17)
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Given the uncertainty associated with each measurement, the weighted mean of rotation matrices
from KUKA- and Vicon-based RWHE calibrations can be computed by solving

R̃TC = arg min
R∈SO(3)

∑
S∈{K,V }

wS‖R− R̃TC,S‖2F (18)

where wK = σ2R,V (σ2R,K +σ2R,V )−1, wV = σ2R,K(σ2R,K +σ2R,V )−1. The solution to Equation 18 is
given as37

R̃TC = R̄UD−1/2U> (19)

where R̄ =
∑

S∈{K,V }wSR̃TC,S ,D is the diagonal matrix consisting of the eigenvalues of R̄>R̄,
and U is an orthogonal matrix whose column vectors are the eigenvectors of R̄>R̄ corresponding
to the diagonal entries ofD.

Rejection Criterion

As noted previously, it is necessary to develop a criterion based on which one chooses to either
reject the Vicon measurement and opt for T̃TC,K or accept the Vicon measurement and perform data
fusion. The rejection criterion is established based on the calibration samples which are collected in
the optimal setting in terms of the IR marker visibility. Namely, the variance of T̃TC,V with respect
to T̃TC,K is computed using an approach similar to Equations 15, 16, 17 during the calibration.
Then, during the future data acquisition step, if the estimated pose T̃TC,V is 1.96σ away (i.e.,
95% confidence interval) from T̃TC,K in any of the position or orientation components, the Vicon
measurement is deemed noisy and thus rejected.

EXPERIMENT

This section first describes the experiment and result of the TRON calibration. Then, a trajectory
with 111 pose samples is run to validate that the reported calibration performance extends to an
arbitrary relative pose reconfigurable within the simulation room.

Calibration

The calibration in this work uses the Point Grey Grasshopper 3 camera with a Xenoplan 1.4/17mm
lens on a ceiling-mounted robot and a half-scale mockup model of the Tango spacecraft from the
PRISMA mission20 on the ground-fixed robot. As visualized in Figure 7, the calibration uses a 350
mm × 350 mm ChArUco board with 11 × 11 pattern of 30 mm squares printed on a flat aluminum
composite panel. The calibration first involves collecting N = 64 samples from random orienta-
tions up to 45◦ tilt from a normal vector from the board. The separation between the camera and
the board is kept around 0.75 m to ensure consistent accuracy of the detected pattern features.

The calibration results are reported as an accuracy of the poses estimated from the Vicon- and
KUKA-only RWHE calibrations and the data fusion. These estimated poses are compared against
those from PnP (i.e., TTC,cal) in terms of three metrics. The mean translation and orientation errors
over N samples are reported as

ET =
1

N

N∑
i=1

‖C t̃(i)CT −
Ct

(i)
CT,cal‖, (20)

ER =
1

N

N∑
i=1

arccos

(
tr(δR)− 1

2

)
, δR = (R̃TC)>RTC,cal. (21)
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Table 1. Results of TRON calibration based on single-source measurements and the data fusion tech-
nique. Mean values are reported along with one standard deviation errors.

Metrics KUKA-only RWHE Vicon-only RWHE Data Fusion

ET [mm] 2.429 ± 0.866 1.208 ± 0.678 0.815± 0.494
ER [◦] 0.637 ± 0.120 0.172 ± 0.083 0.169± 0.077

Ep [pix] 5.176 ± 2.397 4.175 ± 2.718 2.758± 1.716

The third metric is the mean of root-mean-square (RMS) reprojection error of the chessboard corners
of the ChArUco board, which is reported as

Ep =
1

N

N∑
i=1

√√√√ 1

Mi

Mi∑
j=1

‖Π(T̃
(i)
TC ,Xj ,K,d)− xj‖2. (22)

The results of TRON calibration are shown in Table 1. First, the Vicon-only RWHE is a clear
winner compared to KUKA-only RWHE in terms of all metrics, exhibiting millimeter-level position
accuracy and millidegree-level orientation accuracy. The KUKA-only RWHE results in a much
larger orientation error, which suggests that the fixtures between the end-effectors and the objects,
especially the target model, are not perfectly rigid. This is most likely causing the target model to
tilt with respect to its end-effector axis up to a couple of millidegrees. However, the data fusion
shows improvement over both Vicon- and KUKA-only RWHE, reducing both mean translation and
reprojection errors by nearly 33%. Despite the noticeable discrepancy in performances between
KUKA- and Vicon-only RWHE, the performance of data fusion does not deteriorate because it
performs a weighted average of T̃TC,V and T̃TC,K , with more weights assigned to the variable
with less uncertainty. Since the Vicon measurements result in a better calibration performance, the
estimated pose from the data fusion is largely close to T̃TC,V , with a small correction by T̃TC,K

leading to improvement in all metrics.

Arbitrary Pose Reconfiguration

In order to visually confirm the validity of the calibration and data fusion results for an arbitrary
pose reconfiguration, a separate dataset of 111 samples are collected based on the pose distribution
visualized in Figure 8. Note that the relative position assumes a full-scale target, thus allowing a
separation along the camera boresight up to nearly 9.5 meters. The select pose labels estimated via
data fusion are visualized in Figure 9, where the Tango spacecraft’s full-scale wireframe model is
projected onto the images based on the estimated poses. It shows that the calibration and the data
fusion method result in consistent accuracy of the estimated pose labels regardless of the camera’s
orientation and the distance to the target. In general, a similar trend is observed for most of the
samples in the dataset to which the data fusion is applicable. It even extends to 15/111 samples in
which the Vicon measurements are rejected.

However, it should be noted that there are multiple sources of errors that could spike the trans-
lation error up to a centimeter. One is that the model can tilt up to a couple of millidegrees, as
evidenced from the calibration result shown in Table 1. Even such a small error could result in a
non-negligible misalignment of the reprojected wireframe model when viewed at a close distance.
This would likely happen in case the Vicon measurement, which results in a better orientation es-
timation, is rejected and must resort to a KUKA measurement. The other is any errors introduced
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Figure 8. Position (left) and orientation (right) distributions of the test samples. The
relative orientation is parametrized as Euler angles for visualization.

Figure 9. Visualization of estimated pose labels from data fusion via projection of the
Tango wireframe model.
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into the orientation offsets present in the camera-holding robot arm, i.e., (TCKC ,TCV C). In reality,
if there is a non-negligible error in either of these orientation offsets that results in deviation of the
camera boresight, the resulting error in the target’s position would scale with the separation between
the camera and the target. For example, if the camera boresight is tilted by 0.1◦, the target’s position
would be off by 1.75 cm when placed at 10 meters away. In fact, such an error could be introduced
in either KUKA or Vicon measurements as well. While no samples in the collected dataset exhibit
such an egregious level of misalignment that could indicate a centimeter-level error, it still remains
a possibility.

COMPARATIVE ASSESSMENT OF IMAGE QUALITY

This section focuses on the assessment of the qualitiy of images that can be created from the
TRON testbed. First, a few select samples with various illumination conditions are showcased to
visually demonstrate the range of possible lighting configurations that TRON can simulate using
its light boxes and sun lamp. Then, their synthetic counterparts are rendered using the estimated
pose labels of the simulated images for a comparative assessment of the domain gap between two
imageries.

First, Figure 10 visualizes 8 simulated images with different pose and illumination configurations.
The first 4 images (no. 1-4) show the effects of the Earth albedo boxes on the mockup Tango model.
As expected from the albedo light, the model is quite evenly illuminated on the parts that face
the activated light boxes. One peculiar feature is shown in image no. 2, in which the solar panel
completely reflects the light from the albedo boxes it faces due to its high reflectivity. Such effect is
not observed in the SPEED synthetic imagery.

The next 4 images (no. 5-8), on the other hand, show the effects of directed light from the sun
lamp cast on the satellite model. Image no. 5 shows some of the boundaries between the model
parts disappearing due to extensive directed light and the model surface’s reflectivity. It also shows
the sun lamp casting a flare effect across the image, as it often happens when the camera is directed
near the Sun or any source of direct light. Images no. 6, 7 illustrate the high contrast within the
model due to direct sunlight, the feature commonly encountered in spaceborne imageries. Finally,
image no. 8 shows the shadow cast by individual parts of the spacecraft, the effect also unobserved
in the SPEED synthetic imagery.

In order to quantitatively evaluate the domain gap between the TRON simulated images of Figure
10 and its synthetic counterparts rendered from OpenGL, a CNN by Park et al.14 is pre-trained on
SPEED synthetic training set and used as a reference model. Specifically, 495 simulated images are
collected based on pose labels sampled from a full orientation space and a position distribution with
minimum separation at 6.5 meters in order to align with the distribution of the SPEED synthetic
training set.13, 19 Then, the synthetic images with the same pose labels are rendered with the same
setting of the SPEED synthetic imagery and the direction of the light source approximately aligning
with the location of the activated albedo boxes and the sun lamp. In order to minimize the distraction
from any items in the background, both synthetic and simulated images are masked around the
satellite. The CNN performance is measured by the SPEED score defined as

SPEED Score =
1

N

N∑
i=1

E
(i)
R + E

(i)
T /‖Ct(i)CT ‖ (23)

where E(i)
R is the rotation error in radians, and E(i)

T is the translation error in meters. Essentially,
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Figure 10. Representative illumination configurations that can be recreated in TRON.
Images no. 1-4 use the Earth albedo light boxes, and images no. 5-8 use the sun lamp.
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Figure 11. SPEED score of the pretrained CNN by Park et al.14 on synthetic and
simulated images of identical pose labels. The first half of the samples have solar
panel views, while the other half have rear panel views. The data samples in the
shaded region indicate the simulated images are illuminated by the sun lamp. The
remaining samples are illuminated by the light boxes.

Table 2. Mean SPEED scores for different configurations of the model view and light source.

Configuration (view, light) Synthetic Simulated

Solar panel, light boxes 0.140 0.810
Solar panel, sun lamp 0.170 1.007

Rear panel, light boxes 0.121 1.568
Rear panel, sun lamp 0.114 2.062

SPEED score is the average of the sum of the rotation error and the translation error normalized by
the norm of the ground-truth translation vector.

The CNN performance is visualized for all 495 pairs of the synthetic and simulated images in Fig-
ure 11. It shows in that in general, the SPEED score is worse for simulated images given the same
pose labels and the directions of the light source. Table 2 then reports the average SPEED score
for different categories of the 495 images. Namely, the collected images have the model mounted
in either rear panel or solar panel side, which means the camera has the unobstructed view of the
solar panel and rear panel, respectively. The images can also be illuminated by either the light boxes
or the sun lamp. The combination of these categories results in 4 different configurations, and the
distinctions are made in Figure 11 as well. Table 2 shows the CNN pre-trained on the SPEED syn-
thetic training set reports on average far worse performance when using the sun lamp and viewing
the rear panel of the Tango model. This means not only is the sun lamp casting a more challenging
illumination effect, but also the rear panel of the mockup model exhibits a worse gap in the surface
texture compared to the synthetic images. Such difference is visualized in Figure 12, where the syn-
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Figure 12. Comparison of synthetic vs. simulated images for rear panel view direction
and the sun lamp illumination.

thetic image lacks the texture of the simulated images on its rear panel and retains all of its model
features despite the intended illumination of the Sun. This study suggests that the simulated images
can be successfully used to measure and validate the domain gap against the synthetic images, and
that they are even more powerful when 1) the sun lamp is used for illumination, and 2) the more
textured sides of the model are shown.

CONCLUSION

This paper provides a systematic introduction of the next generation Robotic Testbed for Ren-
dezvous and Optical Navigation (TRON) facility at Stanford’s Space Rendezvous Laboratory (SLAB),
the first-of-a-kind robotic testbed for validating the Convolutional Neural Networks (CNN) or any
vision-based navigation algorithms for spaceborne applications. TRON is capable of reconfiguring
an arbitrary relative pose between a camera and a mockup model of the target Resident Space Object
(RSO) using its two 6 degrees-of-freedom KUKA robot arms, so that one can efficiently generate
an arbitrary number of target images with maximally diverse pose distribution. The multi-source
calibration of TRON enables the estimation of the true pose between the camera and the target with
a millimeter-level position and millidegree-level orientation accuracy. TRON also consists of 10
Earth albedo light boxes and a metal halide arc lamp to emulate diffuse and direct light sources
commonly encountered in space missions. The analyses of TRON simulated images with various
illumination settings indicate that TRON is capable of generating an imagery that can be used to
rigorously validate the robustness of CNNs on an unknown domain of imagery different from the
synthetic training images.

Future TRON can benefit from a rigid mounting of a target mockup model and further upgrade
to the KUKA robot arms which would drive the position accuracy of each robot to less than half
a millimeter. By improving the performance of the KUKA-only calibration, the data fusion can
benefit from more equal contributions from both KUKA and Vicon measurements instead of current
one-sided dominance from Vicon. This would also remove a rare scenario where a correct pose
estimate from a Vicon measurement is rejected in favor of an incorrect pose estimate from a KUKA
measurement based on the current rejection criterion.
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One of the most important use cases of TRON is the creation of the next generation Spacecraft
Pose Estimation Dataset (SPEED), named SPEED+, which will include nearly 10,000 simulated
images of the Tango spacecraft with various high-fidelity spaceborne illumination settings and even
more synthetic images primarily intended for training. SPEED+ will facilitate the validation of a
CNN trained to be robust on an unknown spaceborne domain without access to spaceborne images.
Ultimately, SPEED+ will expand to include simulated images of different types of RSOs, such
as satellites, space debris, asteroids, etc., so that it can help validate any vision-based navigation
algorithms developed for future on-orbit servicing and space situational awareness missions.
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