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Improving Zero-Shot Abstraction of Unknown Spacecraft 3D Shape as
Primitive Assembly

Tae Ha Park∗, Emily Bates† and Simone D’Amico‡

This paper investigates the problem of zero-shot abstraction of 3D structures of unknown targets in space
from single images captured on-board the satellites. Such capability is crucial to rapidly gathering coarse
knowledge of the environment around a spaceborne agent, facilitating downstream guidance, navigation and
control algorithms for rendezvous and proximity operations with applications including on-orbit inspection
and debris removal. The previous work by the authors [19] developed a Convolutional Neural Network (CNN)
model and a supervised training pipeline to reconstruct the target’s 3D model as an assembly of a fixed
number of superquadric primitives. This work proposes several improvements in an effort to augment the
CNN model so that it generalizes better to previously unseen spacecraft. The preliminary results indicate
that the proposed methods allow reconstruction using a variable number of primitives depending on the
structural complexity of the target. However, they also reveal that it is extremely difficult to bridge the
performance gap against previously unseen targets without significant expansion of the training dataset in
terms of the diversity of the spacecraft models.
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1. Introduction

Autonomous rendezvous with non-cooperative Res-
ident Space Objects (RSO) is a critical technology
that enables numerous missions for sustainable space
development such as In-Space Assembly and Manu-
facturing (ISAM) and active debris removal. Many
recent works have focused on utilizing a monocular
camera and Deep Neural Networks (DNN) to process
an image input and predict the 6D pose (i.e., posi-
tion and orientation) of the target with respect to
the servicer spacecraft [5, 8, 10, 22–24]. While these
works contributed to advancing the state-of-the-art
for using DNNs in spaceborne computer vision appli-
cations, one major shortcoming is that they assume
prior knowledge of the 3D structure of the target
RSO. In order to support missions in which such an
assumption cannot be made (e.g., debris removal),
DNNs and the overarching Guidance, Navigation and
Control (GN&C) algorithms must be capable of si-
multaneously recovering the unknown 3D geometry
of the target and performing pose estimation from a
sequence of image data. The problem is akin to the
well-known Simultaneous Localization and Mapping
(SLAM) problem in robotics [18, 27], though tracking
the rigid-body motion of an unknown RSO in space
further requires the knowledge of the target’s mass
distribution.
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A number of recent works have explored Deep
Learning (DL) methods for vision-based spaceborne
SLAM applications. For example, Mergy et al. [15]
and Caruso et al. [3] apply various Neural Radiance
Field (NeRF) models [16] to implicitly reconstruct
the scene of an unknown RSO from unlabeled images,
while Legrand et al. [11] first trains a NeRF and uses
it to generate images to train a separate pose estima-
tion NN. Similarly, Barad et al. [1] uses 3D Gaussian
splatting [9] to reconstruct the target model as a cloud
of 3D Gaussian blobs while simultaneously optimizing
for poses associated with each unlabeled images.

As opposed to the aforementioned online methods,
the authors’ previous work [19] investigated an offline
method which seeks to rapidly abstract a coarse, nor-
malized 3D model of an unknown RSO from a single
image of the target captured during Rendezvous and
Proximity Operations (RPO). This is achieved by a
novel Convolutional Neural Network (CNN) model
whose training is supervised using the SPE3R dataset
[20] consisting of high-fidelity Unreal Engine synthetic
images (see Fig. 1) and 3D spacecraft mesh model
labels. The CNN is trained to predict an assembly
of superquadric primitives [2] which each describe
a wide range of simple geometric shapes using only
two parameters. The motivation was that this coarse,
compact and normalized model could be used to ini-
tialize and kickstart any downstream SLAM algorithm.
However, this research also revealed a number of limi-
tations. One is that the CNN is designed to predict
a fixed number of primitives regardless of the per-
ceived structural complexity of the target RSO. The
other is that using 3D mesh models as ground-truth
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Fig. 1: Visualization of select RGB images and binary masks of the SPE3R dataset.

labels inevitably introduces pose biases, especially
since spacecraft have no canonical “up” and “forward”
directions to allow for consistent mesh alignment and
prediction. Coupled with a lack of diversity of space-
craft models in the SPE3R dataset, it forces the CNN
to essentially “memorize” the spacecraft, unable to
generalize to images of a new RSO previously unseen
during training.

The obvious remedy to memorization is to augment
the SPE3R dataset to include even more spacecraft
models. For example, ShapeNet [4] boasts over 50,000
unique 3D models across 55 common object cate-
gories, while recent Objaverse [7] and ObjaverseXL
[6] respectively contain 800K and 10M+ annotated
3D models. Such quantity allows learning rich rep-
resentations particular to various 3D-related tasks
and object classes, showing remarkable zero-shot per-
formances. Recently, Mathihalli et al. [14] took a
Zero123XL model [12] pre-trained on ObjaverseXL
and fine-tuned it on a set of 190 spacecraft models
which subsumes the SPE3R dataset. Their experi-
ments showed improved performance on the task of
novel view synthesis, demonstrating that the size and
diversity of the dataset matter significantly. However,
it still remains a challenging task to collect and as-
semble such a quantity of spacecraft 3D models due
to their scarcity and the security-driven nature of the
aerospace industry. Therefore, the natural follow-up
question is how much the reconstruction performance
can be maximized given a dataset with the aforemen-
tioned restrictions.

In response, this work investigates how various
elements of the CNN architecture and supervised
training pipeline of Park and D’Amico [19] affect the
overall reconstruction quality and generalization to
unseen models while the training is subject to the
same SPE3R dataset. To that end, three areas of im-
provement are explored at the superquadric primitive,
CNN architecture and training pipeline levels. The
preliminary results indicate that the proposed meth-
ods enable reconstruction using a variable number of

primitives depending on the size and complexity of
the target spacecraft, allowing even more compact
representations without loss of reconstruction qual-
ity. However, the results also show that the proposed
methods are simply insufficient to ever bridge the
performance gap on previous unseen targets without
significantly augmenting the training dataset with
more diverse spacecraft shapes. This work reaffirms
the importance of constructing large-scale datasets
for spacecraft 3D reconstruction and provides insight
into how one might resolve such a problem.

This paper is organized as follows. Section 2 pro-
vides details on the proposed improvements, followed
by the experimental setup, results and discussions in
Sec. 2. The paper ends with conclusions in Sec. 4.

2. Proposed Methods

2.1 Superquadric Sampling Strategy
The main loss function that drives the training of

zero-shot 3D abstraction is the bi-directional Chamfer
distance (Lchamfer) defined for two sets of point clouds
(X c,Yc) as

Lchamfer(X c,Yc) =
1

|X c|
∑

x∈X c

min
y∈Yc

∥x− y∥22

+
1

|Yc|
∑
y∈Yc

min
x∈X c

∥x− y∥22
[1]

The loss encourages both point clouds to subsume one
another by minimizing the distance metric between
the closest pairs of points. Successful implementation
of the Chamfer distance loss depends on how uniformly
one can sample surface points from each superquadric
primitive across the entire assembly, where any point
on the superquadric with the size parameters α ∈ R3

and the shape parameters ϵ ∈ R2 can be retrieved via

r(η, ω;α, ϵ) =

α1 cos
ϵ1 η cosϵ2 ω

α2 cos
ϵ1 η sinϵ2 ω

α3 sin
ϵ1 η

 [2]
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In general, the above formulation of superquadrics
suffers from numerical instability as ϵi → 0, result-
ing in samples concentrated around the edges and
corners of the primitives when uniformly sampling
the elevation and azimuth angles (η, ω). Park and
D’Amico [19] resolved the numerical stability issue by
leveraging the dual superquadrics, allowing efficient
and uniform sampling from the primitives of arbitrary
shape parameters. Then, any points internal to other
primitives are ignored so that the points are sampled
from the surfaces of an overall assembly.

The issue with this sampling strategy is that there is
a discrepancy in the total number of sampled points de-
pending on how much the predicted primitives overlap.
Moreover, a primitive that is completely subsumed by
another no longer plays a role in the learning process.
In response, this work adopts a proportional sampling
strategy [25] in which a total of N points are sampled
from both the predicted superquadric assembly and
the ground-truth 3D mesh model. Here, the points
are sampled from each primitive proportional to their
surface areas regardless of whether they are contained
within other primitives or not. This results in a sample
density of N points that is more uniformly distributed
across the entire assembly.

2.2 Autoregressive Inference via Transformer
As shown in Fig. 2a, the previous CNN pipeline [19]

consists of an encoder that produces a common feature
vector z that is fed into multiple independent Multi-
Layer Perceptron (MLP) branches that each predict
the size (α), shape (ϵ), and pose (t, R(r) ∈ SO(3)) of
the superquadrics with respect to the overall assembly.
Note that apart from the common feature vector z,
there is no exchange of information between different
MLP branches that predict the parameters of shared
superquadric primitives. Moreover, the network is
trained to predict a fixed number (M) of primitives
regardless of the size and complexity of the spacecraft
in question.

In order to improve the NN pipeline and allow for
predictions of variable size assemblies, this work inves-
tigates the applicability of a transformer architecture
[29] commonly adopted for Large Language Models
(LLM). As LLMs excel at predicting the most plausi-
ble words given the previous sentences generated so
far, the motivation is to apply the same mechanism to
autoregressively predict the superquadric primitives.
As visualized in Fig. 2b, the feature vector z from
the encoder is considered the first “token” input to
the transformer, which is used to predict the output
feature y1 that is passed through the header layer
to become the parameters associated with the first
superquadric p1. The feature y1 is then appended

to the input sequence, progressively predicting the
next output feature y2,y3, . . . in an autoregressive
manner.

While sentences have end-of-sentence tokens that
can be learned to identify when it has terminated,
spacecraft 3D models do not have such hints with-
out part-wise annotations. Therefore, in order to
allow the prediction of variable size assemblies, the
superquadrics are predicted in decreasing order of
size so that ∥αi+1∥∞ ≤ ∥αi∥∞ is enforced. Once the
predicted primitive size is below a user-set threshold,
the assembly is considered complete and the inference
ends.

2.3 Additional Supervision with Part-Wise Labels
The qualitative results from the previous work

[19] indicated that enforcing losses on the entire su-
perquadric assembly without part-wise annotation
leads to the prediction of primitives that may not
correspond to specific parts (e.g., solar panels) of
the spacecraft. Therefore, in order to alleviate the
difficulty of learning, the part-wise annotations are
manually prepared and additionally provided to NN
during training as shown in Fig. 3. The Chamfer loss
is then applied to each primitive and its correspond-
ing subset of the ground-truth point clouds, while all
other losses (e.g., reprojection loss via differentiable
rendering) are optimized for the complete assembly.
Moreover, in order to prevent the NN from learning
specific orders of primitives, each predicted primitive
is associated with the part annotation whose centroid
is located at the closest distance.

Providing additional supervision may seem con-
tradictory to the goal of improving the NN’s gen-
eralizability on unseen test spacecraft images, since
the selection of the part labels by a human opera-
tor adds to more per-model bias in the training set.
The motivation instead derives from the observation
made in literature which finds that better in-domain
(i.e., validation) performances generally lead to bet-
ter out-of-domain (i.e., test) performances [17, 21].
Moreover, intuitively, by explicitly providing part-
wise annotations, this approach could facilitate the
NN in associating primitives to macroscopic features
of the spacecraft.

3. Experiments

3.1 SPE3R Dataset
The neural networks are trained and tested on

the SPE3R dataset. Recall that out of 64 spacecraft
models in SPE3R, 57 are designated for the training
and validation while the remaining 7 are reserved
as the test models. Each model is accompanied by
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(a) Pipeline of Park and D’Amico [19]. The pose estima-
tion branch is omitted. (b) Proposed pipeline with a transformer architecture.

Fig. 2: Visualization of different NN pipelines.

Fig. 3: Manually selected part-wise labels on 3D model point clouds.

1,000 synthetic images which are split 8:2 for the
training and validation sets for the corresponding
57 models. Therefore, the validation set represents
unseen images of known spacecraft, whereas the test
set consist of unseen images of unknown spacecraft
previously unobserved during the offline training.

3.2 Implementations
The training procedure largely follows that of Park

and D’Amico [19]. The input RGB image is resized to
128 × 128 unless noted otherwise, and the networks
are trained with the AdamW optimizer [13] with initial
learning rate at 1× 10−4. The loss function consists
of Lchamfer (Eq. 1) and the reprojection loss (Lrepr)
defined as

Lrepr(Xm,Ym) = ∥Xm −Ym∥2F
where Xm = R(p̂, t,R)

[3]

where p̂ is the predicted superquadric primitives, (R, t)
are the ground-truth pose labels for the input image,
R(·) denotes a differentiable renderer, and (Xm,Ym)
are respectively the predicted and ground-truth binary
masks. Unless the part-wise annotations are used, the
final loss values also include the regularization on the
overlap of each primitives.

For the transformer-based generator, two models
are considered. The first is GPT-mini§ which is small

§https://github.com/karpathy/minGPT

(7.25M parameters) and trained from scratch. The
second is GPT2 [26] (92.6M parameters) with pre-
trained weights from OpenAI. The latter model is
studied specifically to investigate whether a founda-
tion model such as GPT2 is capable of leveraging its
learned prior and bridging the validation-test gap in
SPE3R.

3.3 Evaluation Metrics
This work employs the same two performance met-

rics as in Park and D’Amico [19]: Chamfer-ℓ1 distance,
which is equivalent to Lchamfer but computed with
ℓ1-norm, and (b) 2D Intersection-over-Union (IoU)
between Xm and Ym. There are two key differences
in implementation of the Chamfer-ℓ1 distance met-
ric compared to Park and D’Amico [19]. First, the
number of surface samples to compute the Chamfer-ℓ1
distance is increased to 100,000 in order to obtain
the unbiased estimate of the metric. The points are
sampled from each primitive in numbers proportional
to their surface area much akin to Sec. 2.1 and in
alignment with previous literature (e.g., [25]). Sec-
ond, when computing the Chamfer-ℓ1 distance for
the test set, the two point clouds (predicted assembly
vs. ground-truth) are first aligned by minimizing the
Chamfer distance in Eq. 1. This is so that any pose
bias in the ground-truth 3D mesh models in the test set
do not affect the final measurement of the reconstruc-
tion quality. Once both prediction and ground-truth
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Table 1: Quantitative evaluation of performance metrics on different configurations. Arrows indicate the
direction towards better performance. Bold faces indicate the best performance. Checkmarks indicate the
configuration that is adopted in the following experiments.

Config. validation test

Chamfer-ℓ1 (↓) IoU (2D) (↑) Chamfer-ℓ1 (↓) IoU (2D) (↑)
(a) Park and D’Amico [19] 0.0355 ± 0.0192 0.850 ± 0.112 0.1040 ± 0.0589 0.533 ± 0.165
(b) ✓ Proportional Sampling 0.0274 ± 0.0126 0.884 ± 0.089 0.0986 ± 0.0473 0.532 ± 0.164

Generator Arch. (Fixed Num. SQ)
(c) ✓ GPT-mini 0.0282 ± 0.0129 0.870 ± 0.081 0.1096 ± 0.0589 0.522 ± 0.166
(d) GPT2 0.0292 ± 0.0195 0.868 ± 0.101 0.0991 ± 0.0519 0.529 ± 0.168

Variable Num. SQ
(e) Decreasing size 0.0646 ± 0.0336 0.638 ± 0.142 0.1052 ± 0.0477 0.454 ± 0.153
(f) ✓ Part-wise labels 0.0270 ± 0.0155 0.900 ± 0.065 0.1151 ± 0.0653 0.516 ± 0.163

Higher Resolution Input
(b) with 256 × 256 input 0.0262 ± 0.0105 0.894 ± 0.086 0.1028 ± 0.0522 0.514 ± 0.167
(f) with 256 × 256 input 0.0253 ± 0.0119 0.914 ± 0.052 0.1140 ± 0.0665 0.523 ± 0.158

are aligned, the Chamfer-ℓ1 distance is computed. Fi-
nally, unlike Park and D’Amico [19] which projects
the predicted assembly using the predicted poses, the
projection is performed using the ground-truth pose
labels since this work does not concern with the prob-
lem of simultaneous pose estimation.

3.4 Results
Table 1 summarizes the quantitative performances

for various configurations on both validation and test
sets of the SPE3R dataset. Here, unless noted other-
wise, the CNN is trained to predict M = 6 primitives.
First, simply improving the surface sampling strategy
on top of the vanilla architecture of Park and D’Amico
[19] results in a significant performance boost on both
validation and test sets. Unfortunately, replacing
the generator with either transformer architecture
does not result in immediate further improvement of
both performance metrics when the network always
predicts M primitives. Allowing predictions of vari-
able length primitives in a decreasing order of size
significantly backfires across all metrics except the
Chamfer-ℓ1 distance on the test set. This hints at
how disconnected the predictions on the test mod-
els are from their respective ground-truths across all
configurations. Training instead with part-wise labels
improves the validation performance with marginally
degraded performance compared to configuration (b).
Finally, using image inputs with increased resolution
also contributes to improved performance on the vali-
dation models; however, there is no such improvement
for the test models.

Figure 4 visualizes various reconstructed primitive

assemblies for configurations (b) and (f). It is inter-
esting to see that with a proper sampling strategy,
the CNN learns to predict primitives for the miscella-
neous parts that the human operator has overlooked
during the manual labeling process. For example,
see the prediction on the 5th row of Fig. 4a where
the CNN captures additional parts that correspond
to distinct yet macroscopically irrelevant structures.
However, learning with part-wise labels makes it easy
for the network to predict only the assigned number
of primitives, allowing an even more compact repre-
sentation when the spacecraft structure is relatively
simple. Again, see the prediction on the 5th row of
Fig. 4a. However, on the test set, there is virtually no
way to visually tell whether configuration (b) or (f) is
better. In the end, the test set predictions resemble
those of the validation set models that look the closest
to the given inputs from the test set.

Finally, the shared feature output vectors z of
the encoder for all validation and test images are
visualized in 2D via t-SNE [28] in Fig. 5. As expected,
the encoded feature vectors are fairly well clustered
for each spacecraft model. Intuitively, if the network
is truly learning the rich representations pertaining to
the underlying macroscopic structure of the satellites,
then, for example, all images of the spacecraft with two
extended solar panels would be expected to entangle
with each other instead of showing distinctive clusters
in t-SNE visualization. Figure 5 is another qualitative
example that the network ends up memorizing all
spacecraft models when trained with SPE3R.
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(a) Validation (b) Test

Fig. 4: Visualization of reconstructed assemblies using different configurations.

3.5 Discussions
The experimental results suggest that various strate-

gies studied in this work—improving superquadric
sampling, employing the transformer architecture and
adding part-wise supervision labels—do produce some
tangible improvement in the validation performance,
but they do not seem to contribute to bridging the
generalization gap towards previously unseen models.
Nevertheless, the significance of the results should be
interpreted with a grain of salt, as the experiments are
performed only within the context of training with the
SPE3R dataset. The results indicate that augmenting
the training pipeline and the network architecture
is simply insufficient to overcome the sheer lack of
diversity in the training dataset. However, it is also
reasonable that improved architecture (e.g., autore-

gressive inference of transformer architecture) and the
learned priors of foundation models such as GPT2
could contribute to improving the generalization capa-
bility as the training is subject to orders of magnitude
more 3D models.

The lessons learned in this work highlight the dire
need for an extensive dataset comprising a large num-
ber of spacecraft 3D models which is necessary to
train any DNN model for image-based spaceborne 3D
reconstruction. If RPO is going to depend on well-
learned priors on a general 3D structure of manmade
objects in space, such a dataset would become a core
requirement. However, given the lack of diversity in al-
ready existing spacecraft on Earth orbits and beyond,
it is infeasible to construct a dataset of spacecraft 3D
models at a scale even matching Objaverse [7] which
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Fig. 5: t-SNE visualization of the encoded feature vector z on the validation set.

contains 800K models. Instead, the question would
be to develop a sizable dataset that would facilitate
the fine-tuning of a foundation model pre-trained on
datasets such as ObjaverseXL [6], which is aligned
with the conclusion of Mathihalli et al. [14]. There-
fore, future efforts should focus on artificially inflating
the datasets such as SPE3R using techniques such as
generative models.

4. Conclusion

In summary, this work proposed several improve-
ments to the model and training pipeline of Park and
D’Amico [19] to perform better zero-shot image-based
abstraction of 3D shapes of unknown spacecraft. Ex-
perimental results reveal that the proposed methods
do allow more compact and parsimonious 3D represen-
tations of spacecraft with less structural complexity,
but they fail to improve the model’s generalizability to
previously unseen target spacecraft due to sheer lack
of training data. The paper provides careful analyses
and proposes a future direction in current research.
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